

RINGING

It is traditional to start and finish ringing with rounds
'Rounds' on 8 bells

The traditional notation shows each bell as a number starting at ' 1 ' for the treb (lightest bell) and running down the numbers to the tenor (heaviest bell).
Bells are usually tuned to the major scale. If there are more than 9 bells, le Bels are usualy tuned to the major scale. If there are more than 9 bells, lette
are substituted, so $0=10, \mathrm{E}=11, \mathrm{~T}=12, \mathrm{~A}=13, \mathrm{~B}=14, \mathrm{C}=15, \mathrm{D}=16$.

Strokes

The mechanical system by which bells are rung 'full circle' means that when the bell is first pulled off with the woolen tuft 'sally'), the bell sounds at 'hand
stroke' and when the tail end is pulled down, the bell sounds at 'back-stroke and brings the bell back to its original position
Each ringer aims to strike his bell to a regular rhythm
It is also traditional that the bells are rung with a small pause before the leading hand-stroke sounds, producing an even beat of 16 followed by a small hesitaí 1234567812345678123456781234
For method-ringing we write each hand-stroke and back-stroke row one below the other:
12345678 -each bell is ringing at hand-stroke
12345678 -each belli is ringing at back-stroke
12345678 -each bell is ringing at hand-stroke
12345678 -each bell is ringing at hand-strok
12345678 -each bell is ringing at back-stroke

There are 2 systems to vary the order that bells ring

Call changes

the appointed conductor calls out the change that is to take place.

Method ringing ${ }_{\text {or scientific }}$

- by which all the ringers learn a method (-a pattern) and the appointed conductor starts, modifies and ends the piece of ringing

The aim is to avoid repeating a change in any piece of method ringing
In principle, a change takes place between two rows, however in norma

Pieces of ringing:

Plain Course - rung without any calls of "Bob!" or "Single!" Plain Course - rung without any calls of (Boblo or single!
Extent -ringing all the changes possible - used most often for 5 bells, where
an extent is 120 changes (takes about 5 minutes) and 6 bells 720 an extent is 120 changes (takes about 5 minutes) and 6 be
(about 30 minutes)
Bob course - a short piece with a call of "Bob!" at each treble lead. Touch -a piece of ringing, with some calls, providing changes without
repeitito repetition for the length of time desired.
Quarter Peal -a long touch - a popular length of ringing with a
1,260 changes, continuing for around 45 minutes
Peal - a piece of ringing with a minimum of 5,040 changes (on 4 to 7 bells or
5,000 for
When changing on an odd number, in a tower with an even number of bells, it is usual for the tenor to 'cover' (rings last bell in each change)

How many different changes are there?

No. of bells	Stage suffix	No. of different changes	Approx. time to ring
3	Singles	$1 \times 2 \times 3=6$	$a \mathrm{few}$ seconds
4	Minimus	$1 \times 2 \times 3 \times 4=24$	1 minute approx
5	Doubles	$1 \times 2 \times 3 \times 4 \times 5=120$	4 minutes
6	Minor	720	25 minutes
7	Triples	5,040	3 hours
8	Major	40,320	24 hours
9	Caters	362,880	9 days
10	Royal	3,628,800	90day
11	Cinques	39,916,8002.	27 years
16	Sixteen	Quite a lot	Um!

What is Music in Change ringing?
Although non-ringers appreciate the overall effect created by bells rung to changes, and can hear differerces between call changes and method ringing,
or odd bell methods with a cover compared with even bell methods, furthe musiacal appreciation is something acquired through study, generally by ringer themselves as they become more experienced in listening to method ringing.
Music in ringing is the appreciation of the musical properties of individual changes contained in a touch, and the sequence in which changes are heard. The sequence of changes is stetermined by the chioce of method; consequently
one will hear people say things like 'Bristol (Surorisel is a musial method' or one will hear people say things like 'Sristol [Surprise] is a musical method' or
'that was a very musical touch of Stedman'. The reason for this is that people that was a very musica touch of tedman.
like the way that a paraticular method generates repetitions and rotations of
a subset of bells within the changes. Methods can be rung to compositions a subset of bells within the changes. Methods can be rung to compositions
that maximise the musical combinations of bells within the changes without that maximise the musical combinations of bells within the changes without
causing any repetition of entire changes which would render the touch false. causing any repetition of entire changes which would render the touch false.
Composing is a great skill, which has been greatl aided by using computer
programs to prove that no change is repeated.

METHODS

The mechanics of a bell swinging full-circle means that we need to restrict its move to one position.
Not possible: Possible: Possible: Possible: $\begin{array}{lllll}12345678 & 12345678 & 12345678 & 12345678\end{array}$

Plain Hunting

12345678		$\frac{12}{21}$
$\begin{array}{ll}123 \\ \times & \times \\ \times 14\end{array}$		
	Now, if we draw a line joining up the	
63857	bell, we see that the same	
618375	emerges for every	
	called the 'blue line' because that is how	
46281735	it was printed in early publications.	
	ine through the treble (no. 1) is	
68472513 86745231	shown in red.	
87654321	in hunting each	
78563412	same pattern but starts at a different point	
75836142 57381624	on the pattern.	
53718264	tismut	
351728	It is much eas	
31		
13	bell you	
123456		
	ly, this pattern repeats aft (about half a minute of ringin	

Plain Bob Major

-it is written out down the right hand side of this poster $\boldsymbol{\rightarrow} \boldsymbol{\rightarrow} \boldsymbol{\rightarrow}$
Still plain hunting until every time the treble (no.1) leads (- first bell in the Still plain hunting until every time the treble (no.1) leads (- first bell in the
change), the next bell follows it twice then itseff leads. This is called 'making 2nds place'. To prevent repeetition the other six bells are made to exchang positions - 'to dodge'. before recommencing plain hunting.
The red line shows the treble plain hunting still. The blue line shows the path of bell $n 0.2$ and the green line shows th
have the same pattern but displaced.
The ringers will remember the blue line and know where to begin. The numbers in circles on the right hand side show where each bell starts off along Another aid to memory is to remember the rotation of work of each bell when Another aid to memory is to remember the rotation of work of each bell when
the treble leads as: dodge $3-4$ downn $5-6$ down; $7-8$ down; $7-8$ up; $;-6$ up; $3-4$ up make 2nds place and repeats. This is called the 'circle of work'.

Cirde of work for Plain Bob Major
The changes are set in motion by the appointed conductor calling "Go Plain The changes are set in motion by the appointed conductor calling "Go Plain
Bob Major!" A call of "That's all!" means that the bells are about to read rounds and that they are to continue ringing rounds until the conductor calls

But this only gives 112 different changes!

 (about five minutes to ring)Step 2: Next there are two types of 'calls' which alter the pattern between one Step 2: Next there are woo types of 'calls' which alter
change and the next. These are 'Bob!' and 'Single!'
The conductor can call these at the appropriate time followin With the right composition ..
All 40,320 changes can be rung without repetition! All 40,320 changes were rung to Plain Bob Major on

Names of Methods

For example, Cambridge Surprise Major, where	
Cambridge	is the NAME
Surprise	is the CLASSIFICATION showing how it is constructed
Major	is the STAGE or how many bells are changing (see tem at etf)

"Bobl"
"Single!"

Bells

The earliest archaeological evidence of bells dates from 3rd millennium BC and is traced to the Yangshao culture of Neolithic China!
Western bells evolved to their presen general shape about 1,000 years ago

Casting

Bell metal is a bronze, containing 23% tin and 77% copper The inner core is built up with a mixture containing sand, loam, straw or horse manure and goat hair. The fibres in the mould are important. They burn in contact with the molten bell metal, creating tiny tubes that help air to escape from the mould.
The final shape is controlled by rotating a 'strickle' - a wooden board Shaped like the cross section of the bell to be cast.
he cope, or outer mould, is formed with the same material, inside rge iron bell shaped container. The strickle is used again to ensur the correct profile inside the mould.

When the moulds are dry they are clamped together. After the molten metal has been poured in, it is left for several days (depending on size) to cool down before the mould is broken off. The bell is cleaned and the top is ground level to provide an accurate mounting surface

Shape

The shape evolved to its present form, as founders experimented to find out what made a better sound. Current shapes are a compromise between the sound quality of the bell (which is heavily influenced by its profile), ease of casting, tuning and other characteristics such as weight and basic dimensions of importance when the bell is rung full circle.
Compared with modern bells, mediaeval bells were longer and thinner.

improvement of bell sounds has occurred in periods of dramatic progress for example, by the Hemonys in the 17 th century by by Engise foonderis in the latem 19
the mid to late 20th century as the result of detailed research).
Today, there is no one formula for the profile of a bell that guarantees the best results for all

Sound

A bell sounds a variety of unrelated notes at the same time unlike an organ pipe or a guitar string, which generates notes related by precise numerical ratios,
When a bell is hit by the iron clapper, we hear a combination of notes, which come from different parts of the bell vibrating at different frequencies, intensities, attack and decay times.
These 'partial tones' combine to give each bell its characteristic tone.

Notes within a bell	
(6) 8	Nominal

Tuning

The science of modern bell tuning was only fully understood in the late 19th century, and is named after Canon Arthur B Simpson who first described it.
All UK founders subsequently adopted 'Simpson tuning', which controls five frequencies

Frames

wood 2008 Change-ringing depends on accurate

control of the bells when rung fullcircle by rope and wheel, which in turn depends on strong bell frames and well-
designed fitings. designed fittings.

unts indicate that mathematical change-ringing was fairly widespread by the early 17 th century The dynamic
loading about every 2 seconds from every bell rung full-circle is 4 tin sits loading about every 2 seconds from every bell rung full-circle is 4 times its weight downwards and 2.2 times its weight fore and aff. The new timber frames of that era accordingly had long right down to the 19th century, except that the timbers became slimmer
right dow to the a hent
Cast
until the 1880 s; and before the advent of the rolled-steel joist the iron side into general use frame were still supported on oak beams.
Most metal frames are of the low-side type, with the bearings on top of them. But where space in the tower is restricted, high-side ' H ' shaped frames are used.

Bell Fittings

Ringing bells

stop ('sow') polls are successively swung higher and higher until they can be stopped ('stood' or 'set') as shown here. The bell is now said to be 'up' (and dangerous to
untrained people) and is ready for use in the traditional English style of bell ringing. The clapper is resting on
the lower edge of the bell when the bell rests on the stay.
During each swing, the clapper travels faster than the bell, eventually striking
the bell when resglin the bell when roughly
horizontal as it rises. At the balance point the clapper will pass over the top and

Who?

"if you can ride a bicycle you can ring!"
Ringing is well within the capabilities of most people. The initial learning takes several weeks after which you can begin to ring with the rest of the band. You never finish learning! Most ringers practise once or twice a week and ring for church services. "Being able to count is all the maths you'll need and you can become a very good ringer without knowing anything about music.

Why?

Maintain a traditional skil

- Team activity
- A great mental workout - Friends around the world Opportunity to vis amazing places

Where?

Listen for the bells at a church near you or look for a tower on 'Dove' Then go along and try it!

Dove's Guide for Church Bell Ringers Beware! once you've got the bug, you'll find it hard to give up:
"I learnt to ring over forty years ago and I still get the same buzz that I did when I first started."

Ringing Associations

To provide an organisation
and opportunity for ringers
to get together to practise
and improve their skills,
associations or guilds started
in the 17 th century and by the
late 19th century they covered
most counties. More recently
they have flourished within
universities.
 to get together to practis associations or guilds started in the 17th century and by the most counties. More recently universities.

$=2$

